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WAITING TIMES WHEN SERVICE TIMES ARE STABLE LAWS: 

TAMED AND WILD 

Donald P. Gaver 

Patricia A. Jacobs 

Department of Operations Research 
Naval Postgraduate School 

Monterey, CA 93943 

Abstract 
Modern telecommunication systems must accommodate 

tasks or messages of extremely variable time duration. Under- 
standing of that variability, and appropriate stochastic models are 
needed to describe the resulting queues or buffer contents. To this 
end, consider an M/G/l queue with service times having a positive 
stable law distribution. Such service times are extremely long (and 
short) tailed, and thus do not have finite first and second moments; 
classical queue-theoretic results do not apply directly. Here we 
suggest two procedures for initially taming stable laws, i.e. so that 
they possess finite mean and variance. We apply the tamed laws to 
calculate certain familiar queuing properties, such as the transform 
of the stationary distribution of the long-run virtual waiting time 
and mean thereof. We show that, by norming or scaling traffic 
intensity, waiting times, and other measures of congestion, we can 
obtain bona fide limiting distributions as the underlying service 
times become untamed, i.e. return to the wild. Simulations support 
the theory. 

1. The Problem Motivation 

In various applications of service system or queuing theory there may arise a 

need to consider service times, S, of great variability, i.e. that seem to possess 

nearly Pareto tails: 

P{S>x} = l-Fs{x) = 0[x-a) (1.1) 



as x -» oo, where a is small enough so that no moments, E[Sk], k>l, are finite. In 

this paper we examine certain aspects of such problems for M/G/l systems, 

focusing on service times that are describable by positive stable laws. In view of 

Theorem 1 on p. 448, Feller, II (1971), it is impossible to ignore the class of stable 

law models to represent the behavior of (1.1); there is the additional fact that 

stable laws approximate the distributions of sums of many long-tailed 

independent random variables, e.g. the sum of a number of activities that 

constitute service. But there is the problem that without finite first and second 

moments at a minimum classical queue-theoretic results do not directly apply. 

In this paper we consider some procedures for taming stable laws so that they 

do possess the required properties, i.e. finite moments. We apply the tamed laws 

to calculate certain familiar queuing properties, such as the virtual waiting time 

in the system. Then we show that, by norming or scaling waiting times and other 

measures of congestion, we can obtain bona-fide limiting distributions as the 

underlying service times become untamed, or "return to the wild". For similar 

work see Abate, et ah (1993,1994) and probably more recent articles as well. 

The authors are very much indebted to Walter Willinger for pointing out 

many interesting references attesting to the appearance of long-tailed 

distributions in modern communications systems. This in no way implicates 

W. Willinger in our present machinations. We also gratefully acknowledge the 

work by Ward Whitt and Joe Abate. 

2. How to Tame a Wild Stable Law 

There are several approaches that naturally suggest themselves for endowing 

a stable-law distributed service time, S, of scale parameter, v, and order 0 < a < 1, 

with finite moments. Recall from Feller (1971) that the Laplace-Stieltjes transform 

of Sis 



e~sS -(vsf (2.1) = exp 

For the value a =1/2 the above possesses an explicit inverse, the name of which 

is inverse Gaussian, a slight misnomer since the distribution is actually that of the 

inverse square root of a Gaussian. Otherwise inverses are only expressible as 

unintelligible infinite series or the equivalent. 

(2.1)    Assessing Shape Indirectly 

As stated, (wild) stable laws possess no finite moments of order >1. 

Furthermore, there are no conveniently obtained explicit quantiles (e.g. median, 

lower or upper quantiles, etc.) of the above, but there are simple substitutes 

based on exponential distributions: ask for the test or killing exponential density, 

of mean Kip), an observation from which, X, exceeds S with probability p. We get 

from (2.1) 

'" = p (2.2) P{S<X} = exp-(v/K:(p))a 

or 

K(p) = v[ln(yp)YVa. 

It is seen that the exponential median, K(1/2), approaches « as a-> 0, and 

approaches v/ln(2) as a -» 1, not surprisingly since for a = 1 the value of S = v 

with probability 1. The value p = e~l = 0.368 is pivotal: for p = e~l, KU) = v for 

all a; for p < er1 (1/p > e) K(p) increases with a T 1; for p > er1 (1/p < e) K(p) 

decreases as at 1. 

(2.2)    I, Taming by Tilting: Initial Screening 

Large deviation theory exploits an exponential tail by positive tilting towards 

large values of interest so that the central limit theorem can be applied. Here it is 

useful to apply negative tilting, see Abate et ah, (1995) and (1994); they call this 



(2.4) 

exponential damping, while we speak of taming. Look at S-values that terminate 

before being killed: 

P{SK < t} = P{S < t\S < X] = fos(xyxtKdx/£fs(*yx/Kdx (2.3) 

which has transform 

E[e-
sS^] = exp -(v(s + l//c)f  /exp-(v/K)a 

In a queuing context the above might arise naturally as a control strategy: K, the 

mean of the service-killing distribution, is selected so as to keep the sizes of the 

jobs selected under control. The subset of jobs that pass the exponential killing 

screen are actually allowed into service, so if X is the arrival rate then the system 

only sees X • e~^v'K'   as arrival rate, and (unsealed) traffic intensity is 

P{K) = XP{S < X}E[S\S < X] 

= Xe-^^a-a(v/K)a-\ (2.5) 

~ XavaKl~a -> ~ 

as JC-> oo. Only if XK
1
'

01
 = 0(1) is there hope of achieving a steady-state 

distribution. 

(2.3)    II, Taming by Truncation: On-Line Completion, Perhaps Partial 

Suppose that each time an S-value is realized a killing (or interruption) value 

X is independently realized. Total service is rendered if the service survives, i.e. 

S < X; otherwise partial service X < S is rendered and a new job can be accepted 

as soon as either event occurs. This setup can be called on-line real-time killed 

service. For the server, it means that the effective service time is SK = min(S,X), 

with transform 



esSK = j~e-sxe-x/Kfs(x)dx + j~e-sx(l - Fs{x)yxlK l/icdx 

I    I       ■,,    W« T -(V{S+VK))a 

= e-(v(s+yK))   | l-g 
v l      n 

1      use 
■+ — 

l+KS 

M*+v*))a 

(2.6) 

l + KS l + KS 

Now 

E[sK] = dl-e-(vri 
) (2.7) 

W~a->oo 

as the mean killing time K*-» <», so again only if /LK
-1-

« = 0(1) will there be an 

opportunity for long-run queue stability. 

3. Transforms of Long-Run Waiting Times 

The formula for the Laplace-Stieltjes transform of the long-run or steady-state 

distribution of M/G/l virtual waiting time, W, is well known to be 

1-p :[e-sW] = - 
1-p 

1-Ee V 
(3.1) 

sE[S] 

provided p = AE[S] < 1; otherwise no such distribution exists and the waiting 

time tends to increase. Now suppose we contemplate an M/G/l system with 

stable law service, tamed as in I or II above, i.e. with exponential, X, screening or 

truncating exponentials, such that E[X] = K= l//i. Then consider a sequence of 

such, as )f-^ooor/i-4 0. We show how to adjust the arrival rate and normalize 

the waiting time so as to obtain (transforms of) bona fide limiting distributions for 

the normalized virtual waiting times. 



First address the scaling of arrival rate X to control the traffic intensity p. From 

(2.5) and (2.7) it is necessary that the actual arrival rate becomes small as the 

taming parameter K becomes large if the resulting traffic intensity is to be 

bounded. Therefore take the adjusted arrival rate to be X* = XK^~a constant; the 

constant is chosen so that the relevant traffic intensity is less than 1. For the 

screening situation, I, 

p] = AY^'OV" ~ X*ava (3.2) 

and for the truncation situation, II, 

Pn=X\a(l-e-WayX*va. (3.3) 

For particular stable law input /-taming results in smaller system load than does 

IZ-taming since a < 1. This is to be expected, as the latter admits some arrivals 

that the former rejects outright. 

Assuming the above, consider the normalized random variable W* = W/K= 

Wß. Replace s by 6/ K= dp. to obtain 

(3.4) E ~e-M'~ 1-P 

* 
1         n 

(l-fy-**]} 
x     H 6ßE[S] 

\                 J 
where S is tamed and p* < 1. 

(3.1)    Screened Service, I 

Substitute (2.4) and the expression E[SK] = e~^K^ a(v/K)a~lv ~ ava\xa~x into 

(3.4). The result is a formula for every screening level K= 1/JI. Now take the limit 

as fi -»0: 

,-eW} l-Pl 

\-Pl 

r(U6)a-iy 

ad 

(3.5) 

It is clear from construction and also from directly expanding that 



v(0)= 
{l+ef-i 

aO 
(3.6) 

is completely monotone, hence the transform of an honest distribution. By 

differentiation or otherwise 

Wj 

* 
_   Pi \-a 

(3.7) 
1-Pl  V   2 

It is immediately seen that the limiting distribution of the scaled limiting random 

variable Wj does not depend on v, the original stable law scale, except through 

the traffic intensity p* = pj < 1. 

(3.2)    Truncated Service, II 

The effect of on-line service truncation is traced by substituting the transform 

(2.6) into (3.4). Take the limit as fx -> 0, i.e. untame, to obtain 

-ew, ii 1-PJJ 
\l-a (3.8) 

for pn < 1. This is recognized to be the transform of a geometric mixture of 

gammas with scale 1 and shape parameter 1 - a. In this case 

1    1-p// 
(3.9) 

Once again the scaled limiting random variable has a distribution that depends 

on the service time scale parameter, v, only through the traffic intensity. The fact 
3f Sfr * 

that pi =apu <pu and that a factor of 1/2 is present attests to the fact that 

greater load is placed on system ii than on system I. Of course greater service of 

all incoming arrivals is furnished by II than by I. 



4. The Number of Customers in the System 

The formula for the generating function of the long-run or steady-state 

distribution of the number of customers waiting or being served at an arbitrary 

time in an M/G/l queue, N, is known to be 

L     J rL-A(l-z)Sl    , 
(4.1) 

where S is a generic service time and p < 1; (cf. Gaver [1959]). 

4.1 I, Taming by Tilting: Initial Screening 

Differentiating the transform of S, (2.4), and evaluating the results at s = 0 

results in 

E[S)~avaK1-a (4.2) 

Var[S]~a{l-cc)vaK ajl-a (4.3) 

as K->°O. Thus, 

£[*,]■ p?   (i-<*La 
2(l -p]) ava 

K   . (4.4) 

Substitute (2.4) into (4.1) for 2 = e = e-s/*C 

-SN/K« 
(l-P/)(^)exp|-[^[l + fs]]%(^ 

. (l-Pl) _     (l-Pl) 
(4.5) 

I-Pi 
1+As   -1 

als 

-P*iv[£s) 

as *•-» 00, where y/"is defined in (3.6). Note that scaling for N is by K?, while for W 

it is by K. Otherwise (3.5) and (4.5) differ only by a factor X* in the denominator. 



4.2 II, Taming by Truncation 

Differentiation of the Laplace transform of the service time (2.6) yields 

E[S] ~ v«*:1-« (4.6) 

E[S2] ~ 2(1 - otfv«*2-« (4.7) 

as K -> oo. Thus, 

4%1-A11^1^- (4-8) 
\}-Pll)   v 

Note that E[Nj\ < E[Nu\ as expected. 

Substituting (2.6) into (4.1) for z = e~s'Ka, it follows that 

lim E „-SNA" (l-Ptf) 

(l-Pfl) (l-Pff) 

this is recognizable as the transform of a geometric mixture of gammas with scale 

■p and shape parameter 1 - a, note its similarity to (3.8). Again the scaling by K« 

is involved. 

To date inversion of the transform appearing in the denominator of (3.5) and 

(4.5) has eluded us. We pose the problem of its inversion, or characterization, to 

Julian Keilson as a birthday gift. Happy Birthday! 

5. Busy Periods 

It has been seen that normalization by powers of K, the mean truncation time, 

permits convergence of the traffic intensity parameter, p, and also the stationary 



distribution of virtual waiting time. It is of interest to study the behavior of the 

busy period when such a normalization is applied. Here convergence to nice 

distributions does not occur. 

Recall that if B is a busy period duration we can look at its generation in these 

terms: 

B = S + BI+B2 + ...+BAT(S) (5-1) 

where S is the first service time in the busy period, {Bj, i = 1, 2,...} is an iid 

sequence of copies of busy periods starting with one arrival/ and N(S) is the 

number of arrivals in S. By conditional expectation, 

and so 

E[B|S,N(S)] = S + ElB-^NiS) 

ErBl_    E[S] E[B]-Y^m' 

(5.2) 

(5.3) 

If we normalize so that X = 0(1 / i^~a) as in (3.2) and (3.3) then the traffic intensity 

tends to a constant as K increases. It follows from (5.3) above that the expected 

busy period is E[B], like E[S], of order Kl~a. This gives hope that the actual 

distribution of a scaled random busy period, B# = B/ K*-a, might converge to 

some recognizable honest form. However, such does not seem to occur. For 

positive 6, q>s(6) is the (smallest positive) root of 

E[e~eB] = <pB{d) = u[6 + A(l - <pB{0))] (5.4) 

where u(6) is the Laplace-Stieltjes transform of the service time. Hence, the 

normalized busy period would satisfy, for Model I, 

-# <pl(0) = exp exp (V/Kf (5.5) 

10 



Differentiation once at 0 = 0 shows that 

>#]~^4; (5.6) 

a similar result, again finite, holds for Model II. However, further analysis shows 

that for Model I 

Var B 
#1   a{l-a)vaKa 

3 <5-7> 
(I-PI) 

i.e. is unbounded as K->°°, even though it has been normalized and the 

normalized mean is finite. Similarly, for Model II 

V^]-^-ayf (5.8) 

which also becomes large like K
0

 but remains larger than the previous variance 

because of more permissive job entry. Recall that the traffic intensities in (5.7) 

and (5.8) differ; refer to (3.2) and (3.3). In summary, it does not appear possible to 

scale stable-law-service busy periods so as to achieve a non-zero mean and yet 

get an honest limiting distribution with finite second moment. This is not 

surprising in light of the fact that the virtual waiting time must be scaled to 

obtain such a limit. Nevertheless some qualitative information may be deduced 

about aspects of system behavior from the likes of (5.7) and (5.8). 

6. Simulation Results 

In this section we describe a simulation experiment and its results. 

We consider an M/G/l queue; the service times have an inverse Gaussian 

distribution that is tamed by truncation. The transform of the untamed 

distribution is (2.1) with a =1/2 and v = 2. The tamed-by-truncation service time 

is simulated by 

11 



s=H^'yJ 
where Z is a standard normal random variable and Y is an exponential random 

variable having mean K. 

The customer arrival rate is determined as follows. Set X* in (3.3) equal to 0.8. 

Put the arrival rate of customers 

X = X IK 

V ) 

The waiting times for successive customers are obtained by recursion 

Wn+1=max(WM+SM-A„+1,0) 

where Wn is the nth customer's waiting time in queue, Sn is the length of the nth 

customer's service time, and An+\ is the time between the wth and (n + l)st arrival. 

Start at W\ = 0. Clearly the above does not simulate virtual waiting times, but in 

the case of Poisson arrivals the long-run limiting results are equivalent. 

Graphical displays of the time series of simulated waiting times appear in 

Figures la-le. One is struck by the large variability in the waiting times: upward 

surges appear to occur occasionally, prevail for awhile, and then be interrupted 

by periods of rather small but fluctuating values. Even averages of 15,000 in 

single realizations are not especially stable: the five quoted range, after 

normalization by K= 150, from 1.48 to 2.46. 

Summaries of 5 replications of the simulation appear in Table 1. In each 

replication the waiting times for 15,000 customers are simulated, and the waiting 

times for all customers then averaged. These results are reported: the normed-by- 

1 / K averages per replication, when averaged, turn out to equal 2, with standard 

error of 0.17. This is in excellent agreement with the result of the theory (3.9), 

which predicts a value of 2. 

12 



TABLE 1 
LIMITING (KLARGE) SIMULATION 

Mean Waiting Time (Scaled) 
15000 Waiting Times per Replication 

(TAMING II) 
V=150 

1 2 3 4 5 
Mean 

of 
Means 

Standard 
Error: 

^JVar/5 

Mean 317.0 369.5 324.1 221.4 269.1 300.2 25.3 

Mean 
K 

2.11 2.46 2.16 1.48 1.79 2.00 0.17 

7. Discussion 

Taming, as described above, may be viewed as a control strategy. It could be 

of interest to ask about the fate of those jobs that are rejected (Model I), or 

partially finished (Model II): these or their residues, respectively, could be 

shunted to another server that must handle such overflowing extremely long 

jobs; presumably these occur at a low enough rate to be accommodated because 

they are filtered from the mainstream of arrivals. Several such stages could be 

envisioned, and an attempt made to optimize with respect to the taming or 

truncation parameters KS at stages s =1,2,.... In practice a deterministic 

truncation time would be realistic, but the mathematics is less tractable. 

Finally, we point out that Pareto-tailed distributions are not the most 

pathologically long-tailed possible. A simple option is to mix one positive stable 

law with another: replace the parameterization (2.1) by v# = vf, where v# is itself 

stable. The result is expressible as the Laplace transform of the mixing 

distribution. 

13 
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